MICROBIAL CONVERSION OF GRISORIXIN, A MONOVALENT CATION IONOPHOROUS ANTIBIOTIC

A. CUER, G. DAUPHIN and J. C. BELOEIL*

Laboratoire de Chimie Organique Biologique, ERA 392 du CNRS, BP 45, 63170, Aubière, France *Laboratoire de Résonance Magnétique Nucléaire, Institut de Chimie des Substances Naturelles, 91110, Gif-sur-Yvette, France

(Received for publication July 21, 1982)

The isolation and identification of a bioconversion product of grisorixin from a strain of *Streptomyces rimosus* is reported. The structure of this product was elucidated from physicochemical data, in particular ¹³C NMR spectra. Its ionophorous and antibiotic properties are markedly different from those of grisorixin.

Grisorixin is a carboxylic ionophorous antibiotic, active against Gram-positive bacteria and fungi, produced by a strain of *Streptomyces griseus* 2142 N 6. The production of this antibiotic in our laboratory has been previously described¹). Anticoccidial and feed-efficiency-improving properties have been reported for many polyether antibiotics, especially for monensin^{2,8}). Four of them (monensin, lasalocid, narasin and salinomycin) are widely employed as poultry and livestock feed additives. The use of ionophores in feeding farm animals is of particular interest⁴).

We are studying ionophorous antibiotic metabolism by means of a microbial model method described by $RosAzzA^{5}$; the objective of this work is to elucidate detoxication mechanisms, and modifications of properties (*i.e.* antibiotic, cation transport, complexation) of these compounds.

The present paper describes the ability of the microorganism, *Streptomyces rimosus*, to modify grisorixin, and the isolation and identification of a bioconversion product.

Materials and Methods

Materials

Grisorixin was obtained in our laboratory¹⁾ from a culture of *Streptomyces griseus* 2142 N 6. Microorganism

A strain of Streptomyces rimosus NRRL 2234 (ATCC 10970) was used.

Culture and Reaction Conditions

Streptomyces rimosus was maintained on Emerson agar slant for 4 days at 28°C. Surface growth from the slant was removed by mixing with sterile water and then inoculated in 100 ml vegetative sterile medium containing 0.1% K₂HPO₄, 0.05% MgSO₄, 1.5% soluble starch (Difco), 0.25% yeast extract (Bio-Mérieux) and 0.25% CaCO₃ in 500-ml Erlenmeyer flask. After incubation at 28°C on a rotatory shaker at 140 rpm for 2 days, 5 ml of this culture were used to inoculate 100 ml of a sterile medium containing 1.5% soybean meal, 2.5% glucose and 0.25% CaCO₃ in a 500-ml Erlenmeyer flask. Incubation was continued for 24 hours; grisorixin was then added at 30 mg/100 ml, and the reaction was allowed to proceed under the same conditions for a further 3 to 4 days.

Detection of the Conversion Product

After reaction, the culture was filtered; the filtrate was saturated with ammonium sulfate and extracted with ethyl acetate. The extract was chromatographed on silica gel TLC plates (Merck 60 F-254) with chloroform - methanol (9: 1). The conversion product was detected by spraying with 50% sulfuric acid and heating to 100°C, and had an Rf value of 0.5 (Rf value of grisorixin: 0.8).

Isolation of the Conversion Product

Ethyl acetate extracts were chromatographed using medium-pressure column chromatography, with Merck Lobar prepacked columns and chloroform - methanol (9:1). Final purification of the product was achieved by preparative thin-layer chromatography using silica gel LS 254 plates developed with the same solvent mixture as above. Pure conversion product was obtained in 20% yield.

Results and Discussion

Grisorixin (Fig. 1) exhibits antibacterial (Gram-positive) and antifungal activity. It shows acute toxicity¹, complexes monovalent cations⁶ and transports potassium in mitochondria⁷; it is water insoluble.

On the contrary, conversion product G_1 (Fig. 1) is devoid of antibiotic activity; it exhibits a very low K⁺ efflux (10⁻¹² mole/s/cm²) through a bulk liquid membrane (made with chloroform) compared to that of grisorixin in the same conditions (7×10⁻¹¹ mole/s/cm²); it is partially water soluble, this property might enable this substance to be eliminated in biological fluids during detoxication.

Microanalysis gave the molecular formula $C_{40}H_{66}O_{13}$. Physico-chemical properties of grisorixin and its conversion product are shown in Table 1.

The IR spectrum of G_1 free acid in KBr (Fig. 2) shows the same absorption frequencies as grisorixin; a wide band between 3400 and 3100 cm⁻¹ corresponding to OH functions, intense bands at 1725 and 1705 cm⁻¹ (carboxylic C=O) and several maxima between 1120 and 1020 cm⁻¹ due to C-O-C bonds.

The mass spectrum of G_1 free acid shows a fragmentation pattern similar to that observed for grisorixin^{1,8)} for rings A, B, C and D (Fig. 1), the main fragment ions being due to cleavage of C-C bonds between the rings; the corresponding peaks appear at m/z 481, 449, 397, 365, 171. Fragmentations are different for E and F rings. The molecular ion peak is at m/z 754.

The single broad band ¹H decoupled ¹³C spectrum of the potassium salt of G_1 in CD₃OD gave 39 resonances (Fig. 3a). To determine signal multiplicities, a new method based on *J*-modulation of a spin echo⁹) was used; "even signals" (CH₃, CH) were separated from "odd signals" (CH₂, quaternary C) (Fig. 3b). At the same time, an "even signal" which was hidden in the solvent peak in the broad band spectrum was separated from the "odd" solvent signal (Fig. 3b). Thus, a total number of 40 resonances were detected. The spectrum in C₂D₆OD and an off-resonance spectrum of G₁ (unpublished results)

Fig. 1. Grisorixin and bioconversion product G_1 . The stereochemistry of grisorixin is indicated in reference 1.

	Grisorixin	G_1		
Formula	$C_{40}H_{63}O_{10}$	$C_{40}H_{66}O_{13}$		
M. W.	708	754		
Melting point	80∼85°C	$120 \sim 123^{\circ}C$		
Optical rotation $[\alpha]_{J}^{20}$	+16° (c 0.04, Me ₂ CO)	+12.3° (<i>c</i> 0.025, Me ₂ CO)		

Table 1. Physico-chemical properties of grisorixin and G_1 free acids.

supported these results.

The chemical shifts of the ¹³C NMR spectra are shown in Table 2. Grisorixin potassium salt chemical shift assignments in CD_3OD were made by comparison with the known values of nigericin sodium salt¹⁰⁾.

 $^{13}\mathrm{C}$ Spectrum of the potassim salt of G_{1} showed 2 COOH signals (1 in grisorixin spectrum)

Fig. 2. IR spectrum of G₁ (free acid in KBr).

C-No.	Functional group	Grisorixin $(\delta \text{ in ppm})$	G_1 (δ in ppm)	$\Delta \delta^{**}$	C-No.	Functional group	Grisorixin (δ in ppm)	G_1 (δ in ppm)	$\Delta \delta^{**}$
1	-СООН	183.8	183.8		21	-CH(O)	87.4	86.7	-0.7
2	-CH(CH ₃)	46.7	46.7		22	-CH(R)°	36.6	45.2	+8.6
3	-CH(O)	75.3	75.3		23	$-CH_2$	33.2	27.9	-5.3
4	-CH(CH ₃)	29.3	29.2		24	-CH(O)	77.9	79.3	
5	$-CH_2$	27.4	27.3		25	-CH(O)	78.7	73.7	-5.0
6	$-CH_2$	24.6	24.6		26	−CH(R')°	33.6	49.5	+15.9
7	-CH(O)	69.6	69.6		27	$-CH_2$	37.9	33.5	-4.4
8	$-CH_2$	36.9	36.7		28	-CH(CH ₃)	41.5	41.1	-0.4
9	-CH(O)	62.0	61.9		29	-O-C-OH	98.4	98.4	
10	$-CH_2$	32.6	32.5		30	-CH ₃	26.3	26.4	
11	-CH(OCH ₃)	80.2	80.1		31	-CH ₃	17.8^{θ}	17.3^{θ}	
12	-CH(CH ₃)	38.0	38.0		32	$-CH_3$	17.3		+164 3
13	-0-C-O	109.3	109.4		32	-COOH		181.6) 1101.5
14	-CH(CH ₃)	40.7	40.6		33	-CH ₃	15.8	60 7	+ 44.9
15	$-CH_2$	42.9	42.9	3	34	-CH	23.0	23 3)
16	-C-O(CH ₃)	83.2+	83.0+		35	-CH	29.4	29.4	
17	-CH(O)	83.2	83.6		36	-CH	13 5	13.6	
18	$-CH_2$	26.6	26.7		37	-CH	13.5	13.5	
19	$-CH_2$	30.8	30.8		38	-CH	11.7	11.6	
20	-C-O(CH ₃)	85.6+	85.0+		30		11.7 14.1θ	14.0θ	
					40	-OCH ₃	58.6	58.9	

Table 2. ¹⁸C NMR spectral data of grisorixin and G₁ potassium salts.*

° $R=R'=CH_8$ in grisorixin.

 $R = CH_2OH$ and R' = COOH in G_1 .

* ¹³C NMR spectra were taken on a Brüker WM-400 spectrometer operating at 100.62 MHz, in CD₃OD solution. Chemical shifts (δ) are in ppm downfield from internal TMS.

** $\Delta \delta = \delta(G_1) - \delta$ (grisorixin).

^{+, θ} Assignments may be interchanged.

		Н−→ОН		CH₃ → COOH				
	Literature ¹¹⁾	Experimental	C-No.	Literature ¹²⁾	Literature ¹³⁾	Experimental	C-No.	
Сα	+35 to +52	+44.9	33	+12	+14	+15.9	26	
$C\beta$	+5 to +12	+8.6	22	-3	-5	-5 -4.4	25 27	
Cγ	0 to -6	$-0.7 \\ -5.3$	21 23	-1	0	-0.4	28	

Table 3. ¹³C Substituent effects*.

* Positive values in ppm represent shifts to lower field.

and 14 C–O carbons (13 in grisorixin spectrum), the extra C–O was a CH₂ signal in the CH₂OH region (60.7 ppm). In addition the 2 methyl groups linked to C_{22} and C_{26} in grisorixin had disappeared. Substituent effects between G₁ and grisorixin potassium salts compared to literature values (Table 3) are consistent with the following conclusion: the methyl group linked to C_{22} has been oxidized to CH₂OH and the methyl group linked to C_{26} to COOH.

Comparison of ¹H NMR spectra of potassium salts of grisorixin and G_1 confirmed G_1 structure: the grisorixin salt spectrum exhibited 10 methyl group signals (7 doublets and 3 singlets) and 8 signals due to protons adjacent to C–O, while G_1 salt spectrum exhibited 8 methyl group signals (5 doublets and 3 singlets) and 10 signals due to protons adjacent to C–O (2 extra signals corresponding to CH_2OH). The total assignment was obtained on a Brüker WM-400 giving ¹H resonances at 400.13 MHz (to be published).

Bioconversion of grisorixin gives a product devoid of antibiotic properties and which exhibits reduced ionophorous transport properties. It should be noted that this bioconversion product is slightly water soluble. All these modifications correspond to a detoxication process. Given the above findings, the present study is to be extended to other ionophores used as poultry and livestock feed additives.

References

- GACHON, P.; A. KERGOMARD, T. STARON & C. ESTEVE: Grisorixin, an ionophorous antibiotic of the nigericin group. I. Fermentation, isolation, biological properties and structure. J. Antibiotics 28: 345 ~ 350, 1975
- SHUMARD, R. F. & M. E. CALLENDER: Monensin, a new biologically active compound. IV. Anticoccidial activity. Antimicrob. Agents Chemother. -1967: 369~377, 1968
- 3) RAUN, A. P.; C. O. COOLEY, E. L. POTTER, R. P. RATHMACHER & L. F. RICHARDSON: Effect of monensin on feed efficiency of feedlot cattle. J. Anim. Sci. 43: 670~677, 1976
- PRESSMAN, B. C. & M. FAHIM: Pharmacology and toxicology of the monovalent carboxylic ionophores. Annual Review Pharmac. Toxicol. 22: 465~490, 1982
- ROSAZZA, J. P. & R. V. SMITH: Microbial models for drug metabolism. Adv. Appl. Microbiol. 25: 169~ 208, 1979
- GACHON, P.; G. CHAPUT, G. JEMINET, J. JUILLARD & J. P. MOREL: Grisorixin, an ionophorous antibiotic of the nigericin group. IV. Complexation of monovalent cations. J. Chem. Soc. Perkin II 1975: 907~ 911, 1975
- CHAPEL, M.; G. JEMINET, P. GACHON, R. DEBISE & R. DURAND: Comparative effects of ionophores grisorixin, alborixin and two derivatives on K⁺ glutamate efflux in rat liver mitochondria. J. Antibiotics 32: 740~745, 1979
- GACHON, P. & A. KERGOMARD: Grisorixin, an ionophorous antibiotic of the nigericin group. II. Chemical and structural study of grisorixin and some derivatives. J. Antibiotics 28: 351~357, 1975
- LE COCQ, C. & J. Y. LALLEMAND: Precise carbon-13 NMR multiplicity determination. J. Chem. Soc., Chem. Comm. 1981: 150~152, 1981
- SETO, H. & N. ÖTAKE: The ¹⁸C-NMR spectra of polyether antibiotics and some empirical rules for structural studies of polyether antibiotics. Heterocycles 17: 555~580, 1982
- ROBERTS, J. D.; F. J. WEIGERT, J. I. KROSCHWITZ & H. J. REICH: Nuclear magnetic resonance spectroscopy. Carbon-13 chemical shifts in acyclic and alicyclic alcohols. J. Am. Chem. Soc. 92: 1338~1347, 1970
- LEVY, G. C. & G. L. GORDON: "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists", p. 47, Wiley-Interscience, New-York, 1972
- 13) WEHRLI, F. N. & T. WIRTHLIN: "Interpretation of Carbon-13 NMR Spectra", p. 37, Heyden, New-York, 1976